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Equation of state data for Duralumin in the pressure range from 0.1 to 0.3 megabar have been determined 
dynamically by measuring shock and free surface velocity electrically in a plate of 24 ST Duralumin that 
has been stressed by a high explosive detonation. A theory is presented which allows comparison with data 
obtained by other experimenters, and which yields the relationship between pressure and compression either 
at constant entropy or constant temperature. The empirical form chosen for the equation of state (p=op. 
+tlJL2

) expresses the pressure as a quadratic function of the compression. Experimental techniques are 
described in detail. Five points are given for the equation of state of Duralumin in the pressure range from 
approximately 0.15 megabar to 0.33 megabars. Some data are also presented for cadmium and steel. 

INTRODUCTION 

EARLY in 1945 experimental work was initiated at 
the Los Alamos Scientific Laboratory for the 

study of physical properties of materials in the pressure 
range from 0.1 to 0.3 megabar (1012 dynes/cm2). One­
tenth of a megabar had been obtqlined statically at the 
Geophysical Laboratory of the Catnegie Institution, but 
determinations of the equation of state at this pressure 
become impractical partly because of the elaborate ·and 
cumbersome apparatus required and partly because 
static measurements are subject to uncertainties re­
sulting from creep distortions. An alternative technique, 
and one particularly suited to the data here desired, is 
to make the measurements dynamically, thereby elimi­
nating the need for elaborate high pressure equipment 
with its inherent creep uncertainties. 

what are usually termed "Rankine-Hugoniot Shock" 
conditions. Such conditions will be denoted by append­
ing the subscript D to the symbols appearing in 
Table I. The mechanical considerations of conservation 
of mass and conservation of momentum, respectively, 
lead to the equations: 

It is, of course, well known that extreme, though 
temporary, pressures can be developed by high ex­
plosives. With suitably designed apparatus, detonation 
of a high explosive may be made to produce in the ma­
terial being investigated a plane shock wave approxi­
mately flat-topped in the sense that the pressure in the 
compressed material is virtually independent of position. 
The conditions for the existence and stability of such 
shock waves are discussed in a variety of textbooks. l 

The theory of propagation of such waves implies that 
simultaneous determinations of the propagation veloc­
ity of the wave and of the mass velocity of the com­
pressed material can be used to infer the equation of 
state. In addition it is possible under certain conditions 
to determine shock pressures by means of piezoelectric 
crystals though this last technique has proved rather 
difficult to exploit. 

THEORY 
'. 

Detonation of high explosive in contact with a 
metallic specimen produces pressures in the metal under 

. * Work done under the auspices of the U. S. Atomic Energy 
Commission. 

t Now at University of California Radiation Laboratory, 
Livermore, California. 

t Now at Swarthmore College, Swarthmore, Pennsylvania. 

.,,-l=p.=u/(D-u) 

PD=Pof)U. 

(1) 

(2) 

The pressures and compressions appearing in Tables II 
and III were computed by means of Eq. (1) and (2). 
For many purposes, for example in comparing our data 
with other data, it is necessary to know the relationship 
between pressure and compression either at constant 
entropy or at constant temperature. Such conditions 
will be specified by the subscripts sand T, respectively. 
In order to compute the difference between PD and P. or 
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TABLE I. Definitions of symbols and list of units 
to be used in computation. 

Definition 

pressure 
specific volume 
density at pressure p 
initial density 
compression -1 
= (p-po)/po· 
specific internal energy 
absolute temperature 
specific entropy 
specific heat at constant 
volume = (ae/ aT). 
shock wave velocity 
particle or mass velocity 
excess of free surface 
velocity over mass 
velocity 
velocity of sound 
= (aplap).+ 
isentropic bulk modulus 
atp=O 
second-order coefficient 
in empirical isentropic 
equation of state; see 
Eq. (17) 

Units 

megabar= 1012 dynes/ cm2 

cm3/g 
g/ cm3 

g/cm3 

cm3-megabar/ g= 1012 ergs/ g 
electron volt=KT= 11 ,605 °C 
cm3-megabar/ g-ev 

cm3-megabar/~-ev 
cm/ JLsec = cmj10-s sec 
cm/JLSec=cm/lo-s sec 

cm/JLSec= cm/lo-s sec 

megabar 

megabar 

1 e.g., Courant-Friedriclrs, Supersonic Flow and Shock Waves • Compression is alternatively defined as (v. -v)/ v. = (~-1)/~. where v. 
(Interscience Publishers, Inc., New York, 1948), p. 121 et seq. is the normal specific volume. 

1472 



1473 DYNAMIC DETERMINATION OF COMPRESSIBILITIES 

PT for some specified compression 7], one requires an 
additional shock condition based on thermodynamic 
conservation of energy: 

(3) 

where t:.eD represents the internal energy change re­
quired to reach the shock pressure PD at the final 
specific volume v. The energy change required to reach 
this same final volume isentropically may be found by 
in tegra tion : 

f
vo 

t:.e.= pdv. . (4) 

The energy excess under conditions produced by the 
shock is thermal energy. This energy difference may be 
expressed in terms of thermodynamic data by the 
equation: 

f
PD 

t:.eD- t:.e.= C. (aT/ ap).dp. 
P. 

(5) 

Equations (3), (4), and (5) when combined result in 
an equation from which the difference PD- P. may be 
found. Estimates of the integrand in Eq. (5) are avail­
able, and for our immediate purposes, appropriate mean 
values can be selected with sufficient accuracy. In this 
case an explicit solution for (pD- P.) may be obtained 
in the simple form: 

(! )p.(vo - v)- f vopdV 
v 

PD- P.= . (6) 
Cv(aT/ ap)v- (!)(vo-v) 

In order to solve Eq. (6) a preliminary estimate is 
made for P. as a function of v at constant entropy, in 
which case the numerator of Eq. (6) may easily be 
evaluated. The specified correction may then be applied 
to the observed shock pressure PD and a second approxi­
mation made for the isentropic pressure-volume relation. 
Further approximations can readily be made if neces­
sary. 

The initial free surface velocity of the target plates 
with which we have experimented is approximately 
twice the mass velocity. More precisely, however, the 
excess (J of the free surface velocity over mass velocity 
is given by the Riemann velocity 

f
P1 

(J= (c/ p)dp 
pD 

(7) 

an expression which may be derived on the assumption 
that the material compressed by the shock expands 
isentropically to density PI when traversed by a wave 
of rarefaction. The difficulty involved in evaluating (J 
stems from the fact that the entropy of the expanding 
material, though constant, is different from the original 

entropy, and accordingly, to determine the isentropic 
equation of state, the experimental data require correc­
tion. BefQre considering the corrections necessary it is 
convenient to transform Eq. (7) to the form 

L
PD 

(J= (-aV/ap) 8tdp. 
o 

(8) 

Evaluation of (J as specified in Eq. (8) may be facilitated 
by the following artifice. First eliminate the shock 
velocity D between Eqs. (1) and (2) obtaining an ex­
pression for the mass velocity U in the form 

f PD(VO-V)! 
U= -- dp, 

o PD 
(9) 

the integrand of which is constant once a particular 
volume v corresponding to the extreme pressure has been 
chosen. Combining Eqs. (8) and (9) there results 

((J-u) /u 

= (l / pD) f
V1

{1_[(av/ ap)s ~ ]t} (a
p

) dv, (10) 
v v Vo av . 

where VI is the final specific volume after the isentropic 
expansion. Equation (10) clearly implies that for suffi­
ciently weak shock the free surface velocity approaches 
twice the mass velocity. Furthermore, approximate 
values of the integrand of Eq. (10) suffice to provide an 

. estimate of the difference between u and (J. 
In order to determine (ap/ av). at the entropy of the 

shocked material, one may compute the entropy change 
t:.s due to the shock, then estimate from available 
thermodynamic data the magnitude of a2p/ asav, and 
thus obtain a corrected value of the desired derivative 
in the form 

(ap/ av).= (ap/ av).o+(a2p/ asav)t:.s. (11) 

A formula for a2p/ asav in terms of readily available 
thermodynamic data is 

a2p T (ap) 2 T a
2
p T2 ( ap)2(ac.) 

asav = - Cv
2 aT • + Cv aTav + Cv3 aT • aT • 

2T2( a
p

) (a
2p

) (12) 
Cv2 aT • aT2 v 

in which the first term on the right is the most important. 
The entropy excess t:.s of the shocked material may be 

computed by integrating with respect to temperature 
at the final known volume of the compressed material. 

The first step in this process is to determine the isen­
tropic temperature T. at the compressed volume v 
from. the formula 

}nVs/To/'F f.v
o(l/Cv) (ap/ aT)vdv. (13) 

, . 
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Next one determines the shock temperature TD at this 
same volume by means of the relation 

!1eD-!1e. 
TD-T.=---

C. 
(14) 

The numera~or of Eq. (14) may be evaluated by means 
of Eqs. (3) and (4) which, with the help of Eq. (6), may 
be put in the form 

f
· o 

(t)P . (vo-v)- pdv . 
1-VO-V( ap) 

2C. aT. 

(15) 

Once TD and T . are known, it is very simple to compute 
!1s, for 

!1s=C. ln(TD/ T.). (16) 

It should perhaps be noted that Eqs. (14) and (16) are 
both based on processes occurring at constant volume, 
in which of course no mechanical work is performed by 
the system. On the other hand, the integrals in Eqs. 
(13) and (15) are to be evaluated at constant entropy. 

It will be clear that all the corrections to be made 
depend on information about the temperature and 
volume dependence of the various thermodynamic 
variables. Fortunately C. and (ap/ aT). do not vary 
much under the conditions covered by the observations. 
The calculations for Duralumin have included an 
estimate of this variation, though it has been found that 
the final results would not be significantly changed if 
both quantities were taken as constants. 

The necessary calculations are quite straightforward 
once an approximate expression for p as a function of 
compression at constant entropy is known. The empi­
rical form chosen is 

(17) 

the entropy being constant. The value of the constant 
a. is inferred from known values of the velocity of 
sound and of the density under standard laboratory 
conditions. Thus the data derived from shock measure­
ments are used merely to evaluate the constant f3 •. 
Some question naturally arises as to how a . is related to 
the observed sound velocity. Equation (17) is intended 
to apply to material under such great hydrostatic 
pressure that any shearing stress is completely negligible 
both in its magnitude and in its effect on the compres­
sion 1/. Accordingly, it would seem natural to evaluate a. 
for conditions under which compression occurs without 
appreciable shearing stress. But determinations of 
sound velocity in general are made either with bars, for 
which CI= (E/ p)! where E is Young's modulus, or for 
large masses of material for which C2= [(k+4G/ 3)/ p]! 
where k is the bulk modulus and G the shear modulus. 
It is the isentropic bulk modulus which relates pressure 

to compression when the shearing stress is negligible, 
and accordingly we have assumed that 

a.= (ap/ aJ.l) .= -vo(ap/ av) .=k.. (18) 

A value of a. may be quickly deduced from CI, if 
Poisson's ratio II is known, or from C2 if the velocity of 
shear waves C3= (G/ p)! is known. In the latter case, the 
computation is obvious; in the former, 

a.=E./3(1-211). (19) 

Most of the currently available data on compressi­
bilities at extreme pressures have been obtained iso­
thermally. These data may likewise be fitted well by an 
equation similar to Eq. (17): 

(20) 

The relation between a. and aT is well known to be 

a.-aT= (voT/ C.) (ap/ aT).2. (21) 

The corresponding difference between f3 . and f3T is not 
so well known, but may be written 

f3.-f3T= - (a.-aT){1- (t)vo[(1/ C. ) (ap/ aT). 
+3 (a2p/ avaT)/ (ap/ aT). -3 (T / C. ) (a2p/ aT2). 

- (T/ C.2) (ap/ aT). (aC./ aT).]}. (22) 

In the course of developing experimental techniques 
with a view to determining what ultimate precision is 
possible, it was found convenient to use an alloy of 
aluminum with superior mechanical properties rather 
than the pure element for which static compressibilities 
are available. In order to compare the present work with 
that of others,2 it is desirable to estimate the effects of 
the alloying constitue~ts. This can be done easily if one 
assumes that the volume of the alloy is equal to the sum 
of the volumes of its constituents. For many alloys this 
assumption leads to an excellent estimate of the normal 
density, and it seems reasonable to expect that its 
validity is not appreciably worse at high pressures. The 
subscripts (1) and (2) will be used to denote properties 
of the constituents; absence of either of these denotes a 
property of the alloy. The additional subscript (0) 
refers to a property under standard laboratory condi­
tions. Thus the equations of state involved would be 

p=aJ.l+f3J.l2, 

p=a!)J.I+f3IJ.lI2, 

p=a2J.l2+/32J.l22, 

(23) 

while the equation connecting the various compressions 
IS 

1 
--- + (24) 

pO(J.l+l) POI(J.lI+1) pdJ.l2+1) 

X 1 and X 2 denote the fractions by mass of the respective 
constituents. Values of a and /3 in terms of aI, a2, /31, and 

2 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 77, 189 (1949). 
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{32 may be approximated at small compressions by im­
plicit differentiation. This approximation probably does 
not give very good average values over the extended 
range of compressions involved, but it should at least 
suffice to indicate whether or not observed discrepancies 
are of the sort to be expected because of variation in 
composition. The required relations are 

l/poa= (X1/Poal)+ (X2/P02Ci2), (25) 
and 

(26) 

EXPERIMENTAL TECHNIQUES 

The essential details of the experimental technique 
for the necessary velocity determinations may be visual­
ized by reference to Fig. L The material to be studied 
is machined into the form of a plate perhaps 8 inches in 
diameter and of a thickness governed by considerations 
to be discussed. A shock wave is induced in this plate 
by means of a large block of high explosive (H.E.) 
detonated simultaneously at all points of its upper sur­
face by means of a suitably designed high explosive lens. 
Detonation of the latter is initiated electrically in the 
usual way. At the upper surface of the plate, a high 
pressure pulse is produced, the magnitude of which 
depends on the type of high explosive used, and the 
duration of which depends on the size and shape of the 
high explosive. In order to achieve a condition of fairly 
constant pressure at the upper surface of the plate for 
an appreciable length of time the block of H .E. must 
be large. For although the instantaneous pressure in the 
detonated H.E. depends primarily on its chemical and ' 
physical properties, the pressure generated by the deto­
nation is immediately relieved at the free surfaces by 
rarefaction waves. These rarefactions limit the time 
available for the measurements to a few microseconds 
and also mean that portions of the plate near the sides 
never receive the full detonation pressure. 

Since the block of high explosive is necessarily of 
finite thickness (usually 3 to 4 inches), the shock wave 
in the plate resulting from impact by the detonation 
wave in the explosive is not quite fiat-topped. The shock 
front is followed immediately by a rarefaction from the 
back surface which results in an exponential decay. This 
unloading wave, moving through the plate more rapidly 
than the shock front , is continuously whittling down 
the peak pressure. In consequence it is necessary to 
measure the parameters as a function of thickness of the 
material. 

The free surface velocity at the bottom of the plate 
(Fig. '1) is ascertained by means of externally placed 
electrical contactors. These contactors, or "pins," 
shown in Fig. 1, may be arranged to measure either free 
surface velocity, by spacing them out behind the plate as 
shown, or compression wave velocity through the plate 
by insulating and imbedding the pins in holes drilled to 

DETONATOR 

A-DETONATOR 
CIRCUIT 

/LENS~ 

GAS PATE 

_ .mQ.OlL,.-! I I ' c~A~~lR 1 _\_+ PINS : 

L .. - Td. J 

ELECTRICAL 
"'" GROUND 

SWEEP IN IT IATION SIGNA L 

,---
SIGNAL 
MIXING 
CIRCUIT 

RECO RD RECORDI NG 
SIGNAL OSCILLOGRAPH 

FIG. 1. Apparatus for determining free surface velocity. 

various depths. In either case, the oscillograph records 
the time at which each pin first touches the metallic 
surface. In order to synchronize the oscillograph, an 
extra pin is imbedded in, the plate at some convenient 
level, thus providing an electrical pulse for initiation of 
the sweep. 

Pressure may be measured independently by means of 
probes made from z-cut tourmaline disks. The cali­
bration constant of the crystals, for the geometry and 
conditions of these tests, was determined from measure­
ments of u and D in steel. It is advantageous to make 
these crystals thin. Ours are thicker, about 0.5 mm, than 
desired but this choice was dictated by practical con­
sideration of existent constructional limitations. Several 
reverberations are required for equilibrium to be at~ 
tained between target and crystal and therefore a useful 
crystal life of about 0.5 tLsec is required. If the crystal 
becomes short circuited before this time a correction 
factor must be applied for the acoustic mismatch of 
crystal and specimen plate. 

Most of the experimental work on which the present 
paper is based was performed in 1945. At that time it 
was realized that elaborate precautions would be re­
quired in order to improve the precision of the data. 
The recent work on Duralumin is inclusive of various 
improvements in technique which have been discovered 
over the course of the last five years. 

In the first place, if the pins are spaced out behind the 
plate as shown in Fig. 1, they may be prematurely con­
nected to the plate, and to one another, by ionization of 
the gas with which they are surrounded. Attempts to 
insulate the pins from this ionization tend to result in 
erratic conduction when the metallic surface itself 
arrives. After much investigation, which included at­
tempted evacuation of the space surrounding the pins, 
and all sorts of insulations for the pins themselves, it 
was discovered that little or no preconduction occurs if 
the gas surrounding the pins is one of the light hydro­
carbons, i.e., methane, ethane, propane, or butane. The 
"gas-tight chamber" in Fig. 1 is always, in the more 
recent work, filled with one of these gases. 

Furthermore, the plane wave of compression as it 
proceeds through the plate must be exceedingly regular. 
It is known that in such a compression the pressure rise 

I 

, 
\ V 

C f 
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FIG. 2. Solid line represents a hypothetical isentropic equation of 
state of steel subjected to uniaxial compression, showing effect of 
shearing stress below the dynamic yield point Y. Shock wave 
velocity is given by the expression D= (-Llp/LlV)tv, where V is 
the specific volume of the material ahead of the shock; LlP is the 
incremental shock pressure; and Ll V, the change in specific volume 
due to the shock. 

Below the dynamic yield point, compressional waves are propa­
gated with the sound velocity, proportional to the square root of 
the slope of the solid line. 

Above dynamic yield point, compressional waves are propagated 
with velocities proportional to the square root of the slope of the 
dashed lines. By joining the end points of the dashed lines, one 
obtains the representation of the "Rankine-Hugoniot" equation of 
state shown by the dotted curve. This lies above the isentropic 
because of the entropy change under shock conditions. Upper 
dashed line represents a shock traveling with the velocity of sound 
at low pressures, i.e., a shock not preceded by an elastic wave. 

is exceedingly abrupt and that the amplitude of this 
abrupt rise is constant provided the material behind the 
wave is uniformly compressed. Constancy of pressure 
behind the shock front may be achieved approximately 
by using a sufficiently large block of high explosive. If, 
however, the wave is not plane, its space configuration 
varies as it proceeds, and if the compression behind the 
front is not uniform, the magnitude of the virtually 
discontinuous pressure change is not constant. Further­
more, even if the wave is perfect in terms of the above 
criteria the plane of the waves may not be parallel to the 
plane of the plate. A variety of special precautions has 
been introduced to minimize effects of these possible 
sources of error. Continual improvement in the prepara­
tion of the H.E. and the "lens" have virtually elimi­
nated departures from planeness and tilt in the wave it­
self. A small residual tilt of the front does not affect (to 
errors of the first order) the inferred velocities if the 
pins are properly arranged in small circles. In some 
experiments, as many as nine circles of eight pins each 
are used to supply simultaneous information. 

In addition to the above difficulties it has been found 
that small irregularities or scratches in the surface of 
the plate result in jets which may cause erratic pin 
discharge. Indeed owing to the polycrystalline structure 
of the metal itself, some irregularities in the moving free 
surface are invariably present, the magnitude of these 
irregularities being of the order of the size of the indIvi­
dual metallic crystal grains. Because of this unavoidable 
roughness, it is not practical to make free surface veloc­
ity measurements over extremely short ranges of 
motion. Experiment has shown, however, that these 
irregularities are not too serious if the total range 
covered by the pins exceeds 5 mm. 

A further limitation on the method results from the 
fact that in certain materials (e.g., steel) an elastic wave 
of compression moves with a higher velocity than the 
shock wave up to a certain pressure which depends on 
the dynamic yield point (see Fig. 2). In such cases, the 
necessary information can be achieved by the use of 
piezoelectric crystals (see Figs. 3 and 4). 

One further technical experimental point deserves 
brief mention. As has been mentioned, some decay of 
pressure is encountered with increasing thickness of the 
plate. It is thus essential that the shock wave velocity 
and the mass velocity be obtained for an equivalent 
particle, namely a particle close to the free surface of the 
plate. But the probes for measuring propagation veloc­
ity are perforce distributed through the thickness of 
the plate, and, since the amplitude of the shock is vary­
ing, so also does the propagation velocity vary. The 
simplest way of finding shock velocity at the free surface 
is to make the portion of the plate where the shock 
velocity is measured somewhat thicker than the portion 
where the free surface velocity is measured, so that an 
average value for the former will be compatible with 
the observed value of the latter. 

From the measured free surface velocity, the mass 
velocity of the compressed material may be inferred. It 
is, of course, necessary to complete the measurement of 
free surface velocity before reverberations can occur in 
the target plate. Otherwise, one obtains a measure not of 
mass velocity but of momentum transfer from explosive 
to plate. Furthermore because of the decay of pressure 
behind the shock front, one might expect the observed 
free surface velocity to diminish as the motion proceeds, 
but such an effect has not been detected. With these 
considerations in mind each set of 8 contactors is 
usually spaced over an interval of about 5 mm from the 

A 

s 

c 

p 

FIG. 3. Assembly for 
holding piezoelectric 
crystal in place. A 
Metal electrode and in­
ertial support for crystal. 
S Guard ring. C Crystal. 
P Specimen through 
which shock-wave pro­
ceeds. 
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back surface of the plate, though for very thin plates an 
even closer spacing may be necessary in spite of the un­
certainties caused by roughness of the moving free sur­
face as previously mentioned, and the shorter reverbera­
tion time. 

In order to obtain extensive data on the equation of 
state of the material under study, it is necessary to pro­
duce in the specimen compressional shock waves of 
arbitrary amplitude. There are three ways in which this 
has been accomplished: 

(1) By increasing the thickness of the specimen, the 
pressure decays naturally, because the amplitude of the 
pressure discontinuity remains constant only if the 
pressure in the compressed material is everywhere 
uniform. With blocks of high explosive of finite dimen­
sions, this condition is not satisfied, and a continuous 
degradation of shock pressure is always encountered. 

(0) 

I 2 3 4 

~~ 
( b) 

FIG. 4. Oscillograph records of shock-wave profile after moving 
through (a) 0.25 in. (b) 1.25 in. of SAE 4340 steel. (1) is cross talk 
from (a); (2) is the synchronizing time pip for the two records; 
(3) is the elastic-wave front; and (4) is the main shock front . 
Total sweep length is 10 }lsec. Elastic pressure is 0.0157 mb; peak 
shock pressure in (b) is 0.225 mb; elastic velocity is 0.585 em! }lsec; 
and shock velocity is 0.510 cm/!,sec. (Oscillations in shock front 
are reverberations in crystal probes.) 

(2) The detonation pressure may be varied by using 
different compositions of high explosive. 

(3) The amplitude of the transmitted shock may be 
adjusted by placing an intermediate metal between the 
block H.E. and the specimen "plate," as would be 
possible with acoustic waves. 

OBSERVED DATA 

The data obtained by the measurements made in 1945 
are summarized in the first two columns of Table II. The 
more recent measurements made on Duralumin are 
listed in the first two columns of Table III. 

In the foregoing two tables, the recorded data repre­
sent averages taken from a large number of individual 
determinations. In Table II the standard deviation for 
both wave velocities is of the order of 2%. Unfor­
tunately, in the case of steel, the presence of the elastic 
wave renders the computation of shock pressure and 
compression somewhat uncertain; the magnitude of the 

TABLE II. Early data on aluminum, cadmium, and steel. 

Free ~-1 Pressure 
Shock surface (com- (com- Pressure 

Material velocity velocity puted) puted) (crystal) 

Aluminum 0.738 0.295 0.250 0.294 
Cadmium 0.396 0.145 0.224 0.248 0.231 
Steel 0.115 0.122 0.223 (calibration) 

Shock wave 0.510 0.166 0.195 0.332 0.324 
(Average) 

Elastic wave 0.588 0.0066 7 0.006 0.G15 0.0157 

correction appears, however, to be less than 1%. In 
Table III the standard deviations as computed from the 
residuals do not exceed 0.5% in any case. In compiling 
both tables the original oscillographic data were 
analyzed by the method of least squares. Table II is 
based on the assumption that the measured free surface 
velocity is twice the mass velocity. In Table III a 
correction to this approximation has been made. All 
units are as specified in Table I. 

NUMERICAL COMPUTATIONS AND RESULTS 

In order to reduce the shock. pressures in Table II to 
adiabatic pressures, the data of Table IV are required. 
The data of the first four columns were computed from 
material to be found in the usual sources, notably 
Birch's Handbook,3 the Metals Handbook,4 and the 
Handbook of Chemistry and Physics. 5 

The values of (38 in the fifth column are those deduced 
by correcting the data of Table II to isentropic condi­
tions and then fitting Eq. (17) to the observed point. 

In the case of steel, only the point obtained at the 
lower shock pressure was used in computing the value 
of (38' At the higher pressure, the computed value of J..l 

appears to be much too large, and woUld imply an even 
smaller value of (38' Further work will be required to 
verify the discrepancy between Bridgman's work and 
ours, but the available data seem worth recording be­
cause of the interest which may attach to the peak 
pressure as recorded by the tourmaline crystal and the 
relatively good agreement between this pressure and 
that computed by Eq. (2). 

Values of (38 may also be computed by an analysis of 
Bridgman's more recent work,2 and for aluminum and 
iron these appear in the last column of Table IV. 

TABLE III. Recent data on 24 ST Duralumin. 

Free Mass Shock Isentropic 
Shock surface velocity ~-1 pressure pressure 

velocity velocity (computed) (computed) (computed) (computed) 

0.6460 0.1629 0.0814 0.1442 0.1462 0.1435 
0.6850 0.2254 0.1126 0.1967 0.2144 0.2079 
0.7005 0.2395 0.1196 0.2059 0.2329 0.2250 
0.7426 0.3014 0.1503 0.2538 0.3103 0.2952 
0.7520 0.3179 0.1584 0.2668 0.3312 0.3139 

3 Francis Birch, Handbook of Physical Constants (Geological 
Society of America, 1942). 

4 Americal Society of Metals, "Metals handbook," 1948. 
6 Charles D. Hodgman, Handbook oj Chemistry and Physics 

(Chemical Rubber Publishing Company, Cleveland, 1952). 
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TABLE IV. Thermodynamic properties of selected elements. 

Element p. a . c. fl. 
(apjiJT). fl. (Bridgman ) 

Aluminum 2.699 0.742 0.108 0.56 1.53 1.69±0.04 
Cadmium 8.65 0.48 0.014 0.46 2.20 
Steel 7.84 1.69 0.054 0.46 0.8 2.4 ±0.1 

The standard deviations for these values are simply 
indications of the precision with which the empirical 
equation of state fits the observed points and should not 
be taken as an indication of the experimental accuracy. 
The relatively better precision shown in the case of the 
aluminum is owing chiefly to the fact that the aluminum 
is much more compressible, so that a greater range of 
values of the compression are available for analysis. 
The correction from {3T to {3. amounts to +0.01 for 
aluminum when computed by Eq. (22); it bas not been 
computed for steel. 

The corrections required to reduce the data of Table 
III are shown graphically in Fig. 4. The plotted values of 
(u-u)/ u are subject to considerable uncertainty, but 
the values shown for PD- p. should be accurate to 5% 
or better. In analyzing the reduced pata> a value 
a.= 0.760 was arbitrarily selected. This value was 
inferred from measurements of the velocity of sound In 

Duralumin. The method of least squares was then used 
to infer the value {3. = l.S7±0.02 for this material. 
Correction for the presence of copper [see Eqs. (25) and 
(26)J gives corresponding values for pure aluminum of 
a.=0.753 and {3. = 1.53. Correction of these to iso­
thermal conditions [see Eqs. (21) and (22)J yields 
aT=0.726, {3T= 1.52. Corresponding coefficients com­
puted from Bridgman's data again by the method of 
least squares are aT=0.715±0.001, {3T= 1.68±0.04. 
The discrepancy between tbe t wo values of a is of no 
immediate concern, since the shock wave measurements 
are not used for this determination. However, part of 
the discrepancy between the two values of {3T results 
from the fact tbat the a 's do not agree. If our arbitrary 
choice of a is made in sucb a way as to give agreement 
with the figure deduced from Bridgman's work, then 
the discrepancy between the {3's drops from 0.16 to 
0.11. One migbt reasonably inquire as to wbether a 
three-term equation of state would better fit our data, 
and yield better agreement between our results and 
Bridgman's. Unfortunately if the second-order coeffi­
cients were made to agree, the third-order coefficient as 
deduced from our data would be negative, and hence 
could hardly be useful for purposes of extrapolation. 

It should of course be noted that Bridgman's meas­
urements extend to only 30000 kg/ cm2, whereas ours 
cover roughly ten times this range. Since Eq. (17) is 
purely empirical, it is to be expected that different sets 
of coefficients would be required to give the best repre­
sentations of the data over the two different ranges. 

CONCLUSIONS 

Determination of shock and mass velocities in mater­
ial subject to explosive stress yields data for equations 
of state up to 0.3 megabar or more. With care the pre­
cision attainable is about 0.5% on the velocity measure­
ments, but because of the extreme pressures that may 
be reached, even this precision provides a more precise 
determination of the second-order term in the equation 
of state than is possible with static measurements. In 
the case of aluminum, part or all of the discrepancy be­
tween the coefficients determined statically and those 
determined dynamically may be owing to the different 
pressure ranges to which the respective measurements 
apply, though the sign of the discrepancy suggests that 
this explanation is inadequate. 

In Fig. 5 there has been included an estimate of the 
final temperature increase in the Duralumin after the 

o. 01 02 0 .3 0 4 o. 
SHOCK PRESSURE - MEGABARS 

FIG. 5. Excess of shock pressure over adiabatic pressure (tJ», 
temperature increase after expansion (fiT), and fractional excess 
free surface velocity (u-u) /11 as functions of pressure. 

expansion to atmospheric pressure. [This estimate is 
based on the entropy change as calculated by Eq. (16), 
and has been converted to centigrade degrees.J It will be 
observed that the melting point of the aluminum would 
be reached by a 0.6-megabar shock, and it seems likely 
that the measurements would become impracticable 
under these conditions. In any event the problem of 
correcting free surface velocity to obtain mass velocity 
would become much more complicated. 

A final word about precision seems in order. It might 
be imagined on casual examination of Eqs. (1) and (2) 
that D and u must be determined with equal precision in 
order to obtain useful data on the equation of state. 
Fortunately, however, u need not be known with as 
great precision as D. To show this, let us consider the 
problem of determining {3 in terms of u and D by means 
of Eqs. (1), (2), and (17), assuming a to be known. The 
fractional error t::.{3/ {3 to be feared in {3 due to fractional 
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errors !::..u/ u and !::..D/ D in u and D, respectively, is 

(!::,.{3/ B) = (u/ {3) (a{3/ au) (!::"u/ u) 
+ (D/ B) (a{3/ aD) (!::"D/ D). (27) 

Calculation reveals that for the Duralumin, at the 
highest pressure attained, (u/ (3) (a{3/ au) = -1.9 and 
(D/ {3) (8{3/ 8D) = 7.8 so that four times the precision is 
required on D to make the errors of equal magnitude. 
Accuracy of 0.5% on D would imply 4% accuracy on {3. 
In view of the fact that five points were used for our 

final determination of {3, the calculated standard 
deviation of a little less than 2% appears to be com­
patible with these considerations. 
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